Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1.

نویسندگان

  • Shoudong Ye
  • Ping Li
  • Chang Tong
  • Qi-Long Ying
چکیده

Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor

Self-renewal of pluripotent mouse embryonic stem (ES) cells is sustained by the cytokine leukaemia inhibitory factor (LIF) acting through the transcription factor Stat3. Several targets of Stat3 have previously been identified, most notably the reprogramming factor Klf4. However, such factors are neither required nor sufficient for the potent effect of LIF. We took advantage of Stat3 null ES ce...

متن کامل

Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor.

LIF (leukaemia inhibitory factor) is a key cytokine for maintaining self-renewal and pluripotency of mESCs (mouse embryonic stem cells). Upon binding to the LIF receptor, LIF activates three major intracellular signalling pathways: the JAK (Janus kinase)/STAT3 (signal transducer and activator of transcription 3), PI3K (phosphoinositide 3-kinase)/AKT and SHP2 [SH2 (Src homology 2) domain-contain...

متن کامل

Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency

Activation of Wnt/β-catenin signaling can induce both self-renewal and differentiation in naive pluripotent embryonic stem cells (ESCs). To gain insights into the mechanism by which Wnt/β-catenin regulates ESC fate, we screened and characterized its downstream targets. Here, we show that the self-renewal-promoting effect of Wnt/β-catenin signaling is mainly mediated by two of its downstream tar...

متن کامل

Wnt/β-catenin and LIF–Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal

Activation of leukemia inhibitor factor (LIF)-Stat3 or Wnt/β-catenin signaling promotes mouse embryonic stem cell (mESC) self-renewal. A myriad of downstream targets have been identified in the individual signal pathways, but their common targets remain largely elusive. In this study, we found that the LIF-Stat3 and Wnt/β-catenin signaling pathways converge on Sp5 to promote mESC self-renewal. ...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 32 19  شماره 

صفحات  -

تاریخ انتشار 2013